31 resultados para Structural damage identification

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Painful peripheral neuropathies are precipitated by nerve injury from disease or trauma. All such injuries will be accompanied by an inflammatory reaction, a neuritis, that will mobilize the immune system. The role of the inflammation itself is difficult to determine in the presence of structural damage to the nerve. A method has been devised to produce a focal neuritis in the rat sciatic nerve that involves no more than trivial structural damage to the nerve. This experimental focal neuritis produces neuropathic pain sensations (heat- and mechano-hyperalgesia, and cold- and mechano-allodynia) in the ipsilateral hind paw. The abnormal pain sensations begin in 1–2 days and last for 4–6 days, with a subsequent return to normal. These results suggest that there is a neuroimmune interaction that occurs at the outset of nerve injury (and perhaps episodically over time in slow developing conditions like diabetic neuropathy) that produces neuropathic pain. The short duration of the phenomena suggest that they may prime the system for more slowly developing mechanisms of abnormal pain (e.g., ectopic discharge in axotomized primary afferent neurons) that underlie the chronic phase of painful neuropathy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metal-catalyzed oxidation may result in structural damage to proteins and has been implicated in aging and disease, including neurological disorders such as Alzheimer's disease and amyotrophic lateral sclerosis. The selective modification of specific amino acid residues with high metal ion affinity leads to subtle structural changes that are not easy to detect but may have dramatic consequences on physical and functional properties of the oxidized protein molecules. PrP contains a histidine-rich octarepeat domain that binds copper. Because copper-binding histidine residues are particularly prone to metal-catalyzed oxidation, we investigated the effect of this reaction on the recombinant prion protein SHaPrP(29–231). Using Cu2+/ascorbate, we oxidized SHaPrP(29–231) in vitro. Oxidation was demonstrated by liquid chromatography/mass spectrometry, which showed the appearance of protein species of higher mass, including increases in multiples of 16, characteristic of oxygen incorporation. Digestion studies using Lys C indicate that the 29–101 region, which includes the histidine-containing octarepeats, is particularly affected by oxidation. Oxidation was time- and copper concentration-dependent and was evident with copper concentrations as low as 1 μM. Concomitant with oxidation, SHaPrP(29–231) suffered aggregation and precipitation, which was nearly complete after 15 min, when the prion protein was incubated at 37°C with a 6-fold molar excess of Cu2+. These findings indicate that PrP, a copper-binding protein, may be particularly susceptible to metal-catalyzed oxidation and that oxidation triggers an extensive structural transition leading to aggregation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Checkpoints maintain the order and fidelity of the eukaryotic cell cycle, and defects in checkpoints contribute to genetic instability and cancer. Much of our current understanding of checkpoints comes from genetic studies conducted in yeast. In the fission yeast Schizosaccharomyces pombe (Sp), SpRad3 is an essential component of both the DNA damage and DNA replication checkpoints. The SpChk1 and SpCds1 protein kinases function downstream of SpRad3. SpChk1 is an effector of the DNA damage checkpoint and, in the absence of SpCds1, serves an essential function in the DNA replication checkpoint. SpCds1 functions in the DNA replication checkpoint and in the S phase DNA damage checkpoint. Human homologs of both SpRad3 and SpChk1 but not SpCds1 have been identified. Here we report the identification of a human cDNA encoding a protein (designated HuCds1) that shares sequence, structural, and functional similarity to SpCds1. HuCds1 was modified by phosphorylation and activated in response to ionizing radiation. It was also modified in response to hydroxyurea treatment. Functional ATM protein was required for HuCds1 modification after ionizing radiation but not after hydroxyurea treatment. Like its fission yeast counterpart, human Cds1 phosphorylated Cdc25C to promote the binding of 14-3-3 proteins. These findings suggest that the checkpoint function of HuCds1 is conserved in yeast and mammals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Free transition metal ions oxidize lipids and lipoproteins in vitro; however, recent evidence suggests that free metal ion-independent mechanisms are more likely in vivo. We have shown previously that human ceruloplasmin (Cp), a serum protein containing seven Cu atoms, induces low density lipoprotein oxidation in vitro and that the activity depends on the presence of a single, chelatable Cu atom. We here use biochemical and molecular approaches to determine the site responsible for Cp prooxidant activity. Experiments with the His-specific reagent diethylpyrocarbonate (DEPC) showed that one or more His residues was specifically required. Quantitative [14C]DEPC binding studies indicated the importance of a single His residue because only one was exposed upon removal of the prooxidant Cu. Plasmin digestion of [14C]DEPC-treated Cp (and N-terminal sequence analysis of the fragments) showed that the critical His was in a 17-kDa region containing four His residues in the second major sequence homology domain of Cp. A full length human Cp cDNA was modified by site-directed mutagenesis to give His-to-Ala substitutions at each of the four positions and was transfected into COS-7 cells, and low density lipoprotein oxidation was measured. The prooxidant site was localized to a region containing His426 because CpH426A almost completely lacked prooxidant activity whereas the other mutants expressed normal activity. These observations support the hypothesis that Cu bound at specific sites on protein surfaces can cause oxidative damage to macromolecules in their environment. Cp may serve as a model protein for understanding mechanisms of oxidant damage by copper-containing (or -binding) proteins such as Cu, Zn superoxide dismutase, and amyloid precursor protein.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Streptococcus pneumoniae is the main causal agent of pathologies that are increasingly resistant to antibiotic treatment. Clinical resistance of S. pneumoniae to β-lactam antibiotics is linked to multiple mutations of high molecular mass penicillin-binding proteins (H-PBPs), essential enzymes involved in the final steps of bacterial cell wall synthesis. H-PBPs from resistant bacteria have a reduced affinity for β-lactam and a decreased hydrolytic activity on substrate analogues. In S. pneumoniae, the gene coding for one of these H-PBPs, PBP2x, is located in the cell division cluster (DCW). We present here structural evidence linking multiple β-lactam resistance to amino acid substitutions in PBP2x within a buried cavity near the catalytic site that contains a structural water molecule. Site-directed mutation of amino acids in contact with this water molecule in the “sensitive” form of PBP2x produces mutants similar, in terms of β-lactam affinity and substrate hydrolysis, to altered PBP2x produced in resistant clinical isolates. A reverse mutation in a PBP2x variant from a clinically important resistant clone increases the acylation efficiency for β-lactams and substrate analogues. Furthermore, amino acid residues in contact with the structural water molecule are conserved in the equivalent H-PBPs of pathogenic Gram-positive cocci. We suggest that, probably via a local structural modification, the partial or complete loss of this water molecule reduces the acylation efficiency of PBP2x substrates to a point at which cell wall synthesis still occurs, but the sensitivity to therapeutic concentrations of β-lactam antibiotics is lost.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Drosophila, stripe (sr) gene function is required for normal muscle development. Some mutations disrupt embryonic muscle development and are lethal. Other mutations cause total loss of only a single muscle in the adult. Molecular analysis shows that sr encodes a predicted protein containing a zinc finger motif. This motif is homologous to the DNA binding domains encoded by members of the early growth response (egr) gene family. In mammals, expression of egr genes is induced by intercellular signals, and there is evidence for their role in many developmental events. The identification of sr as an egr gene and its pattern of expression suggest that it functions in muscle development via intercellular communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dose-limiting toxicity of interleukin-2 (IL-2) and immunotoxin (IT) therapy in humans is vascular leak syndrome (VLS). VLS has a complex etiology involving damage to vascular endothelial cells (ECs), extravasation of fluids and proteins, interstitial edema, and organ failure. IL-2 and ITs prepared with the catalytic A chain of the plant toxin, ricin (RTA), and other toxins, damage human ECs in vitro and in vivo. Damage to ECs may initiate VLS; if this damage could be avoided without losing the efficacy of ITs or IL-2, larger doses could be administered. In this paper, we provide evidence that a three amino acid sequence motif, (x)D(y), in toxins and IL-2 damages ECs. Thus, when peptides from RTA or IL-2 containing this sequence motif are coupled to mouse IgG, they bind to and damage ECs both in vitro and, in the case of RTA, in vivo. In contrast, the same peptides with a deleted or mutated sequence do not. Furthermore, the peptide from RTA attached to mouse IgG can block the binding of intact RTA to ECs in vitro and vice versa. In addition, RTA, a fragment of Pseudomonas exotoxin A (PE38-lys), and fibronectin also block the binding of the mouse IgG-RTA peptide to ECs, suggesting that an (x)D(y) motif is exposed on all three molecules. Our results suggest that deletions or mutations in this sequence or the use of nondamaging blocking peptides may increase the therapeutic index of both IL-2, as well as ITs prepared with a variety of plant or bacterial toxins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The olfactory system is remarkable in its capacity to discriminate a wide range of odorants through a series of transduction events initiated in olfactory receptor neurons. Each olfactory neuron is expected to express only a single odorant receptor gene that belongs to the G protein coupled receptor family. The ligand–receptor interaction, however, has not been clearly characterized. This study demonstrates the functional identification of olfactory receptor(s) for specific odorant(s) from single olfactory neurons by a combination of Ca2+-imaging and reverse transcription–coupled PCR analysis. First, a candidate odorant receptor was cloned from a single tissue-printed olfactory neuron that displayed odorant-induced Ca2+ increase. Next, recombinant adenovirus-mediated expression of the isolated receptor gene was established in the olfactory epithelium by using green fluorescent protein as a marker. The infected neurons elicited external Ca2+ entry when exposed to the odorant that originally was used to identify the receptor gene. Experiments performed to determine ligand specificity revealed that the odorant receptor recognized specific structural motifs within odorant molecules. The odorant receptor-mediated signal transduction appears to be reconstituted by this two-step approach: the receptor screening for given odorant(s) from single neurons and the functional expression of the receptor via recombinant adenovirus. The present approach should enable us to examine not only ligand specificity of an odorant receptor but also receptor specificity and diversity for a particular odorant of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitochondria have been proposed to possess base excision repair processes to correct oxidative damage to the mitochondrial genome. As the only DNA polymerase (pol) present in mitochondria, pol γ is necessarily implicated in such processes. Therefore, we tested the ability of the catalytic subunit of human pol γ to participate in uracil-provoked base excision repair reconstituted in vitro with purified components. Subsequent to actions of uracil-DNA glycosylase and apurinic/apyrimidinic endonuclease, human pol γ was able to fill a single nucleotide gap in the presence of a 5′ terminal deoxyribose phosphate (dRP) flap. We report here that the catalytic subunit of human pol γ catalyzes release of the dRP residue from incised apurinic/apyrimidinic sites to produce a substrate for DNA ligase. The heat sensitivity of this activity suggests the dRP lyase function requires a three-dimensional protein structure. The dRP lyase activity does not require divalent metal ions, and the ability to trap covalent enzyme-DNA complexes with NaBH4 strongly implicates a Schiff base intermediate in a β-elimination reaction mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations of von Hippel–Lindau disease (VHL) tumor-suppressor gene product (pVHL) are found in patients with dominant inherited VHL syndrome and in the vast majority of sporadic clear cell renal carcinomas. The function of the pVHL protein has not been clarified. pVHL has been shown to form a complex with elongin B and elongin C (VBC) and with cullin (CUL)-2. In light of the structural analogy of VBC-CUL-2 to SKP1-CUL-1-F-box ubiquitin ligases, the ubiquitin ligase activity of VBC-CUL-2 was examined in this study. We show that VBC-CUL-2 exhibits ubiquitin ligase activity, and we identified UbcH5a, b, and c, but not CDC34, as the ubiquitin-conjugating enzymes of the VBC-CUL-2 ubiquitin ligase. The protein Rbx1/ROC1 enhances ligase activity of VBC-CUL-2 as it does in the SKP1-CUL-1-F-box protein ligase complex. We also found that pVHL associates with two proteins, p100 and p220, which migrate at a similar molecular weight as two major bands in the ubiquitination assay. Furthermore, naturally occurring pVHL missense mutations, including mutants capable of forming a complex with elongin B–elongin C-CUL-2, fail to associate with p100 and p220 and cannot exhibit the E3 ligase activity. These results suggest that pVHL might be the substrate recognition subunit of the VBC-CUL-2 E3 ligase. This is also, to our knowledge, the first example of a human tumor-suppressor protein being directly involved in the ubiquitin conjugation system which leads to the targeted degradation of substrate proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms that cause aging are not well understood. The oxidative stress hypothesis proposes that the changes associated with aging are a consequence of random oxidative damage to biomolecules. We hypothesized that oxidation of specific proteins is critical in controlling the rate of the aging process. Utilizing an immunochemical probe for oxidatively modified proteins, we show that mitochondrial aconitase, an enzyme in the citric acid cycle, is a specific target during aging of the housefly. The oxidative damage detected immunochemically was paralleled by a loss of catalytic activity of aconitase, an enzyme activity that is critical in energy metabolism. Experimental manipulations which decrease aconitase activity should therefore cause a decrease in life-span. This expected decrease was observed when flies were exposed to hyperoxia, which oxidizes aconitase, and when they were given fluoroacetate, an inhibitor of aconitase. The identification of a specific target of oxidative damage during aging allows for the assessment of the physiological age of a specific individual and provides a method for the evaluation of treatments designed to affect the aging process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural maintenance of chromosomes (SMC) family member proteins previously were shown to play a critical role in mitotic chromosome condensation and segregation in yeast and Xenopus. Other family members were demonstrated to be required for DNA repair in yeast and mammals. Although several different SMC proteins were identified in different organisms, little is known about the SMC proteins in humans. Here, we report the identification of four human SMC proteins that form two distinct heterodimeric complexes in the cell, the human chromosome-associated protein (hCAP)-C and hCAP-E protein complex (hCAP-C/hCAP-E), and the human SMC1 (hSMC1) and hSMC3 protein complex (hSMC1/hSMC3). The hCAP-C/hCAP-E complex is the human ortholog of the Xenopus chromosome-associated protein (XCAP)-C/XCAP-E complex required for mitotic chromosome condensation. We found that a second complex, hSMC1/hSMC3, is required for metaphase progression in mitotic cells. Punctate vs. diffuse distribution patterns of the hCAP-C/hCAP-E and hSMC1/hSMC3 complexes in the interphase nucleus indicate independent behaviors of the two complexes during the cell cycle. These results suggest that two distinct classes of SMC protein complexes are involved in different aspects of mitotic chromosome organization in human cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

tRNA binding to the ribosomal P site is dependent not only on correct codon–anticodon interaction but also involves identification of structural elements of tRNA by the ribosome. By using a phosphorothioate substitution–interference approach, we identified specific nonbridging Rp-phosphate oxygens in the anticodon loop of tRNAPhe from Escherichia coli which are required for P-site binding. Stereo-specific involvement of phosphate oxygens at these positions was confirmed by using synthetic anticodon arm analogues at which single Rp- or Sp-phosphorothioates were incorporated. Identical interference results with yeast tRNAPhe and E. coli tRNAfMet indicate a common backbone conformation or common recognition elements in the anticodon loop of tRNAs. N-ethyl-N-nitrosourea modification–interference experiments with natural tRNAs point to the importance of the same phosphates in the loop. Guided by the crystal structure of tRNAPhe, we propose that specific Rp-phosphate oxygens are required for anticodon loop (“U-turn”) stabilization or are involved in interactions with the ribosome on correct tRNA–mRNA complex formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron density map of the small ribosomal subunit from Thermus thermophilus, constructed at 4.5 Å resolution, shows the recognizable morphology of this particle, as well as structural features that were interpreted as ribosomal RNA and proteins. Unbiased assignments, carried out by quantitative covalent binding of heavy atom compounds at predetermined sites, led to the localization of the surface of the ribosomal protein S13 at a position compatible with previous assignments, whereas the surface of S11 was localized at a distance of about twice its diameter from the site suggested for its center by neutron scattering. Proteins S5 and S7, whose structures have been determined crystallographically, were visually placed in the map with no alterations in their conformations. Regions suitable to host the fold of protein S15 were detected in several positions, all at a significant distance from the location of this protein in the neutron scattering map. Targeting the 16S RNA region, where mRNA docks to allow the formation of the initiation complex by a mercurated mRNA analog, led to the characterization of its vicinity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination, and repair in bacteria and eukarya. We report here the identification and characterization of the SSB of an archaeon, Methanococcus jannaschii. The M. jannaschii SSB (mjaSSB) has significant amino acid sequence similarity to the eukaryotic SSB, replication protein A (RPA), and contains four tandem repeats of the core single-stranded DNA (ssDNA) binding domain originally defined by structural studies of RPA. Homologous SSBs are encoded by the genomes of other archaeal species, including Methanobacterium thermoautotrophicum and Archaeoglobus fulgidus. The purified mjaSSB binds to ssDNA with high affinity and selectivity. The apparent association constant for binding to ssDNA is similar to that of RPA under comparable experimental conditions, and the affinity for ssDNA exceeds that for double-stranded DNA by at least two orders of magnitude. The binding site size for mjaSSB is ≈20 nucleotides. Given that RPA is related to mjaSSB at the sequence level and to Escherichia coli SSB at the structural level, we conclude that the SSBs of archaea, eukarya, and bacteria share a common core ssDNA-binding domain. This ssDNA-binding domain was presumably present in the common ancestor to all three major branches of life.